Derivation of the Rate Law for the the Reversible Michaelis-Menten Mechanism


http://biology.stackexchange.com/a/43832/1136

Created with Wolfram Mathematica

1. Preliminaries

reversible_mm_forSO_htmlVersion_1.png

reversible_mm_forSO_htmlVersion_2.png

2. Mechanism

reversible_mm_forSO_htmlVersion_3.gif

3. Derivation of the rate-constant form of the Rate Law

Set up the differential equation

Let $x$ be the conentration of ES

Let $e_o$ be the total enzyme concentration

Therefore, the concentration of E (the 'free' enzyme concentration) equals $e_o$ - $x$

From the steady-state assumption, the rate of formation of x will equal the rate of breakdown of $x$, and the following differential equation may be written

$$ {dx\over dt} = {k_{1,2}\ (e_o -x)\ s + k_{3,2}\ (e_o -x)\ p - (k_{2,1} + k_{2,3})\ x = 0}\ \ \ \ \ \ \ (2)$$

Solving for $x$

reversible_mm_forSO_htmlVersion_4.png

reversible_mm_forSO_htmlVersion_5.png

4. Velocity equation

reversible_mm_forSO_htmlVersion_6.png

reversible_mm_forSO_htmlVersion_7.png

reversible_mm_forSO_htmlVersion_8.png

reversible_mm_forSO_htmlVersion_9.png

5. Define Kinetic Constants

reversible_mm_forSO_htmlVersion_10.png

reversible_mm_forSO_htmlVersion_11.png

reversible_mm_forSO_htmlVersion_12.png

reversible_mm_forSO_htmlVersion_13.png

6. The Kinetic-Constant form of the Rate  Law

reversible_mm_forSO_htmlVersion_14.png

7. An Important Check

reversible_mm_forSO_htmlVersion_15.png

reversible_mm_forSO_htmlVersion_16.png

Created with the Wolfram Language